

Trust and Interaction in Industrial Human-Robot Collaborative applications

Iñaki Maurtua IK4-TEKNIKER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 637095.

Highly customizable robotic solutions for effective and safe human robot collaboration in manufacturing applications

- FourByThree proposes the development of a new generation of <u>modular</u> industrial robotic solutions that are suitable for <u>efficient</u> task execution in collaboration with humans in a <u>safe</u> way and are <u>easy</u> to use and program by the factory worker
- 3 Industrial settings + 1 Permanent lab
 - Welding, assembling, riveting, machine tending

www.fourbythree.eu

FOURBYTHREE has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement nº 637095

CONTEXT: X-ACT

- Expert cooperative robots for highly skilled operations for the factory of the future
 - Dual-arm based fenceless disassembly cell
 - Disassembly of electrical appliances
 - No fixtures
 - High flexibility

CONTEXT: SMERobotics

- The European Robotics Initiative for Strengthening the Competitiveness of SMEs in manufacturing by Integrating aspects of Cognitive Systems
- FLEXAS: Aeronautic components assembly using flexible dual-arm robotic in close collaboration with human operators

CONTEXT: Need of collaboration

X-ACT

SMERobotics

CONTEXT: Safety Strategy

- Human Detection and tracking
- SSM 🔪
- Other Means
 - Safety devices
 - Feedback
 - Working procedure

The objective is to create a two-arm robot

IROS2015, Hamburg

CONTEXT: Interaction mechanisms

- Pushbutton
- Voice based
- Gestures
- Implicit

IROS2015, Hamburg

- Safety. How do workers perceive the safety aspects when working in the vicinity of an industrial robot without physical barriers
- Interaction. What is the workers' feedback about different interaction mechanisms? How do they influence the level of trust?

- 17 workers
 - Experience: 16 industrial, 6 working with robots
 - Knowledge about accidents: 11 machinery, 4 robots

EXPERIMENT: Task (1)

- 5 Iterations per session
 - 4 according to experimenter's request
 - Voice, gesture, button, implicit
 - 5th free choice

EXPERIMENT: Task (2)

- Non programed entrance into the working space of the robot
 - The worker had to take an object from the workbench
 - The robot was moving at high speed

- Standard pushbutton is the preferred option 38%
 - Gestures 26% and voice 21%. Implicit 15%
 - It is the only one that did not confuse the participants
- Feedback on command recognition is suggested by 41% of participants
 - Lighting (41%) and screen message (35%)Speech (12%) or sound (18%)
- 100% considered the system easy (35%) or very easy (65%) to use

RESULTS: Interaction-Screen

- Only 2 participants complaint about the position of the screen.
 - But it should be considered (worker height and possible occlusions)
- 71% of the participants would appreciate a task guiding message on the screen
 - 6% feel the screen distracting
 - 64% paid attention always vs 6% that did not pay attention ever
- Most participants (82%) considered that the information on the screen contributed to do the task safer
- 10 knew HMD: 7 thought they could be useful

- 2 participants felt ridiculous using voice commands
- 59% participants preferred predefined commands instead of natural language (1 participant)
- Only one participant doubt about the Command to be used (second session)
- But in case of having more commands 65% considered a possible **source of confusion**
- 24% 'shouted'

- Nobody felt ridiculous
- The number of participants that thought that gestures can be confusing increased from the first session to the second (2 / 4)
 – Only 2 gestures
- In case of having more commands 76% considered a possible source of confusion

- 18% felt that they lost control
- Only 3 participants would like this form of interaction
- 53% doubt whether the robot had identified the end of the task or not

- The beep sound used to warn the approach to the risky zone was not considered annoying (100%)
- It was considered helpful even in the collaboration area (very low speed) by 71%

- After the experiment 53% felt that their perception on safety had improved
- 76% felt completely safe; 24% felt safe
- The marks on the floor
 - The Warning zone was appreciated by most participants (82%)
 - The collaborative zone was appreciated by 24% (35% placed inside it during the collaboration)
- All safety measures contributed in a similar way to the safety perception

- An emergency pushbutton would be convenient (53%) or should be mandatory (47%)
- The interlock key would be convenient (53%) or should be mandatory (47%)
- In the experiment:
 - (29% / 18%) used it and took the key
 - (18% / 18%) used it but they didn't remove it
 (53% / 65%) did not use it
- The interlock key would be used always by 18% of the participants

- The **pose** during collaboration was appreciated by most participants (65%)
- The metallic nature and overhead position was not considered relevant
- 41% would prefer an **smaller** robot
- Perception on robot speed changed from 1st to 2nd session
 - 24% / 41% too slow
 - 65% / 47% slow (it contributed to feel safer even if it is slow)
 - 12% / 12% considered it right
- 7 participants suggested the use of a helmet

- In case of collision the robot should stop immediately (100%)
 - Instead of moving in the opposite direction
- In case of collision nobody considered that a serious injury might happen
- 29% started the task even before the robot finished the part turning
- 29% moved back before the robot start turning

Good news!

2015/10/02

IROS2015, Hamburg

FourByThree

- Safety strategy
 - SSM (different technologies)
 - Force and Torque monitoring
 - Variable stiffness
- Multichannel input
 - Voice, gestures, remote control
 - Projection system
 - Virtual buttons
 - Guiding information
 - Manual guidance

- More information:
 - www.fourbythree.eu
 - www.smerobotics.org
 - www.xact-project.eu

Iñaki Maurtua: inaki.maurtua@tekniker.es

